3.645 \(\int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=303 \[ \frac {2 \left (5 a^2+9 b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b \left (29 a^2+3 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{21 a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (5 a^4-2 a^2 b^2-3 b^4\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{21 a d \sqrt {a+b \sec (c+d x)}}+\frac {6 a b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/21*(5*a^4-2*a^2*b^2-3*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1
/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2/7*a^2*sin(d*
x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(5/2)+6/7*a*b*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+2/
21*(5*a^2+9*b^2)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+2/21*b*(29*a^2+3*b^2)*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/d
/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.94, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3841, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {2 \left (5 a^2+9 b^2\right ) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (-2 a^2 b^2+5 a^4-3 b^4\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{21 a d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \left (29 a^2+3 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{21 a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{7 d \sec ^{\frac {3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]

[Out]

(2*(5*a^4 - 2*a^2*b^2 - 3*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[S
ec[c + d*x]])/(21*a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*b*(29*a^2 + 3*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*
Sqrt[a + b*Sec[c + d*x]])/(21*a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a^2*Sqrt[a + b*S
ec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (6*a*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c
 + d*x]^(3/2)) + (2*(5*a^2 + 9*b^2)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2}{7} \int \frac {\frac {15 a^2 b}{2}+\frac {1}{2} a \left (5 a^2+21 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (4 a^2+7 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {4 \int \frac {-\frac {5}{4} a^2 \left (5 a^2+9 b^2\right )-\frac {5}{4} a b \left (13 a^2+7 b^2\right ) \sec (c+d x)-\frac {15}{2} a^2 b^2 \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{35 a}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+9 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {8 \int \frac {\frac {5}{8} a^2 b \left (29 a^2+3 b^2\right )+\frac {5}{8} a^3 \left (5 a^2+27 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{105 a^2}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+9 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {\left (b \left (29 a^2+3 b^2\right )\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{21 a}+\frac {\left (5 a^4-2 a^2 b^2-3 b^4\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{21 a}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+9 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (5 a^4-2 a^2 b^2-3 b^4\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{21 a \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \left (29 a^2+3 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{21 a \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+9 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (5 a^4-2 a^2 b^2-3 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{21 a \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \left (29 a^2+3 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{21 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {2 \left (5 a^4-2 a^2 b^2-3 b^4\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{21 a d \sqrt {a+b \sec (c+d x)}}+\frac {2 b \left (29 a^2+3 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{21 a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+9 b^2\right ) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.48, size = 237, normalized size = 0.78 \[ \frac {(a+b \sec (c+d x))^{5/2} \left (8 \left (5 a^4-2 a^2 b^2-3 b^4\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+2 a \sin (c+d x) \left (3 a^3 \cos (3 (c+d x))+a \left (29 a^2+72 b^2\right ) \cos (c+d x)+24 a^2 b \cos (2 (c+d x))+44 a^2 b+36 b^3\right )+8 b \left (29 a^3+29 a^2 b+3 a b^2+3 b^3\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )}{84 a d \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+b)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*(8*b*(29*a^3 + 29*a^2*b + 3*a*b^2 + 3*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Elli
pticE[(c + d*x)/2, (2*a)/(a + b)] + 8*(5*a^4 - 2*a^2*b^2 - 3*b^4)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF
[(c + d*x)/2, (2*a)/(a + b)] + 2*a*(44*a^2*b + 36*b^3 + a*(29*a^2 + 72*b^2)*Cos[c + d*x] + 24*a^2*b*Cos[2*(c +
 d*x)] + 3*a^3*Cos[3*(c + d*x)])*Sin[c + d*x]))/(84*a*d*(b + a*Cos[c + d*x])^3*Sec[c + d*x]^(5/2))

________________________________________________________________________________________

fricas [F]  time = 0.83, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [B]  time = 1.97, size = 2050, normalized size = 6.77 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x)

[Out]

-2/21/d*(-3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellip
ticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4+5*cos(d*x+c)*sin(d*x+c)*Elliptic
F((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^4-5*a^3*b*((a-b)/(a+b))^(1/2)-29*a^2*b^2*((a-b)/(a+b))^(1/2)-9*a*b^3*((a-b)/
(a+b))^(1/2)+18*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b^2+22*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b+12*cos(d*x+
c)^2*((a-b)/(a+b))^(1/2)*a*b^3-29*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b+11*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b
^2-3*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3+12*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*a^3*b+3*cos(d*x+c)*((a-b)/(a+b))
^(1/2)*b^4+3*cos(d*x+c)^5*((a-b)/(a+b))^(1/2)*a^4+2*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^4-5*a^4*((a-b)/(a+b))^(
1/2)*cos(d*x+c)+5*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*((b+a*cos
(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*EllipticE((-1+cos(d*x+c))*((a-b)/(a
+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)
))^(1/2)*sin(d*x+c)-3*b^4*((a-b)/(a+b))^(1/2)-29*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*a^3*b*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+27*E
llipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(
d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(
d*x+c)+29*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b*((b+a*cos(d*x+c
))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-29*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^
(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)+3*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-29*cos(d*x+c)*sin(d*x+c)*Ellipti
cF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^3*b+27*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/
sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*b^
2-3*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b^3+29*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x
+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*a^3*b-29*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2+3*co
s(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x
+c)^4*(1/cos(d*x+c))^(7/2)/sin(d*x+c)/(b+a*cos(d*x+c))/a/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(5/2)/sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________